Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis[S-benzyl-3-(4-n-octyloxybenzyl-idene)dithiocarbazato- $\left.\kappa^{2} N^{3}, S^{\prime}\right]$ palladium(II)

M. T. H. Tarafder, ${ }^{\text {a }}$ M. A. A. A. A. Islam, ${ }^{\text {b }}$ M. B. H. Howlader, ${ }^{\mathrm{a}}$ N. Guidolin ${ }^{\mathrm{c}}$ and E. Zangrando ${ }^{\mathrm{c} *}$
${ }^{\text {a }}$ Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh,
${ }^{\mathbf{b}}$ Department of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh, and ${ }^{\mathbf{c}}$ Dipartimento di Scienze Chimiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
Correspondence e-mail: ezangrando@units.it

Received 16 July 2010
Accepted 27 October 2010
Online 6 November 2010
In the title compound, $\left[\operatorname{Pd}\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OS}_{2}\right)_{2}\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ atom displays the expected square-planar coordination geometry. However, the trans configuration, which allows the $\mathrm{Pd}^{\mathrm{II}}$ atom to be located on a crystallographic inversion centre, is unusual with respect to the cis arrangement found in analogous Pd complexes comprising similar N, S-chelating ligands.

Comment

Metal chelates of S-alkyl/aryl esters of dithiocarbazate (SBDTC) and their Schiff bases have attracted the interest of researchers for their coordination chemistry and also for their potential use as anticancer compounds (Maurya et al., 2003; How et al. 2008; Crouse et al., 2004; Tarafder et al., 2001, 2002; Ali et al., 1992). As a continuation of our interest in N, S-donor ligands and their complexes, we have isolated a novel Schiff base of SBDTC, S-benzyl-3-[(4-n-octyloxyphenyl)methylene]dithiocarbazate, and its bis-bidentate palladium(II) complex, the title compound, (I).

(I)

The structure of (I) shows the $\mathrm{Pd}^{\mathrm{II}}$ ion in the expected square-planar donor environment (Fig. 1), with the metal atom on a centre of inversion and the asymmetric unit therefore constituted by half of the molecule. Each of the ligands is coordinated to the metal as a bidentate chelating agent bonding via the thiolate S and azomethine N atoms, yielding two five-membered chelate rings. The $\mathrm{Pd}-\mathrm{N}$ and
$\mathrm{Pd}-\mathrm{S}$ bond lengths (Table 1) are sligthly shorter and longer, respectively, than those observed in Pd complexes containing bis- N, S-chelating dithiocarbazate ligands, which fall in the ranges 2.067-2.111 and $2.253-2.268 \AA$, respectively, as retrieved from the Cambridge Structural Database (CSD, Version 5.31 of November 2009; Allen, 2002). Inside the C-$\mathrm{N}-\mathrm{N}-\mathrm{C}$ group, the bond distances follow the trend found in the other Pd complexes retrieved, indicating that $\mathrm{C} 9-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{C} 1$ are double bonds and $\mathrm{N} 1-\mathrm{N} 2$ is a single bond. As described in the Experimental section, the octyloxy chain is disordered over two positions, leading to absolute $\mathrm{O} 1-\mathrm{C} 17-$ C18-C19 torsion angles of 66.6 (14) and $162.7(17)^{\circ}$ for the two arrangements, corresponding to synclinal and antiperiplanar conformations, respectively. The former is close to that found in the octyloxybenzaldehyde thiosemicarbazone ligand (Islam et al., 2010).

A key interest in bis- N, S-bidentate complexes of Ni triad metals is the adoption of cis versus trans geometries. A CSD search for the fragment $M[\mathrm{SC}(\mathrm{S}) \mathrm{NN}]_{2}$ (where $M=\mathrm{Ni}, \mathrm{Pd}$ or Pt) indicates that Ni complexes with N, S-chelating dithiocarbazate groups adopt either a cis (12 entries) or a trans geometry (12 entries) with equal probability. By contrast, five out of six Pd complexes have a cis configuration, while all five Pt complexes adopt a trans arrangement. The unique reported Pd complex with a trans geometry is notable in that the S-benzyldithiocarbazate ligand has an NH_{2} group (Tampouris et al. 2007) as the coordinating N atom, rather than an alkyl- or alkylidene-substituted N atom.

cis

trans

Although the Pd and Pt dithiocarbazate complexes are fewer in number, there is a fair indication that these metals prefer a cis (Pd) or a trans (Pt) geometry, although it should be noted that a broader search of Pd complexes of bis-bidentate ligands with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{S}$ (nine cis versus five trans) or $\mathrm{N}-$ $\mathrm{N}-\mathrm{C}-\mathrm{S}$ (10 cis versus 17 trans) linkages shows no clear preference. Thus, we can say that (I) represents a rare example of a bis(dithiocarbazato)palladium(II) ion in a trans-planar coordination geometry (see scheme above), likely assumed in order to avoid steric clashes between the substituents on the ligand. The (ferrocenyl)ethylidene (Duan et al., 1998) and diazafluorene-dithiocarbazate (Zhou et al., 2007) derivatives, which have bulky groups on the ligand and a cis configuration, appear to be stabilized by intramolecular stacking interactions between the cyclopentadienyl planes from different Fe atoms and between the diazafluorene rings, respectively. Since no stacking interaction between phenyl rings is detected in (I), intermolecular packing forces favouring the trans geometry appear to be excluded. In the absence of such effects, the stabilization of one configuration over the other may result from the different trans influence exerted by the N and S

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only one conformation of the disordered alkyl chain is shown. [Symmetry code: (i) $-x,-y+1,-z$.]
atoms, induced by the electronic and steric effects of substituent groups on the ligand, which lead to different $\mathrm{Pd}-\mathrm{N}$ and $\mathrm{Pd}-\mathrm{S}$ bond energies.

Experimental

The title compound was prepared by adding a solution of palladium chloride $(0.04 \mathrm{~g}, 0.25 \mathrm{mmol})$ in methanol $(60 \mathrm{ml})$ to a hot solution of the dithiocarbazate ligand $(0.21 \mathrm{~g}, 0.5 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$. The resulting solution was kept under reflux for 30 min , after which time a brick-red precipitate appeared. The compound was filtered off, washed with hot ethanol, and recrystallized from a mixture of chloroform and ethanol ($20: 10 \mathrm{v} / \mathrm{v}$) (yield $0.1 \mathrm{~g}, 40 \%$; m.p. 417 K). In an attempt to grow single crystals, the product was dissolved in a solution of chloroform and toluene ($20: 5 \mathrm{v} / \mathrm{v}$) and allowed to stand at room temperature. Red microcrystals unsuitable for X-ray study were obtained after 7 d . The compound was then dissolved in a mixture of chloroform and acetone ($30: 30 \mathrm{v} / \mathrm{v}$) and allowed to stand at room temperature. Very fine flat orange-red crystals of (I) were obtained after 12 d and proved suitable for analysis.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OS}_{2}\right)_{2}\right]$
$M_{r}=933.60$
Monoclinic, PP $2_{1} / c$
$a=16.586(4) \AA$
$b=14.082(3) \AA$
$c=10.507(2) \AA$
$\beta=103.22(3)^{\circ} \AA$
Data collection
Enraf-Nonius DIP1030 image-plate
diffractometer
Absorption correction: part of the
refinement model (ΔF)
(Parkin et all, 1995$)$
$T_{\text {min }}=0.742, T_{\text {max }}=0.932$
$V=2389.0(8) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.35 \times 0.12 \mathrm{~mm}$

Data collection

Enraf-Nonius DIP1030 image-plate diffractometer
Absorption correction: part of the
(Parkin et al., 1995)
$T_{\text {min }}=0.742, T_{\text {max }}=0.932$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Pd1-N1	$2.034(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.396(4)$
$\mathrm{Pd} 1-\mathrm{S} 1$	$2.2825(11)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.287(4)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.312(4)$		
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{S} 1$	$83.08(10)$		

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.083$
$S=0.77$
60 restraints
H -atom parameters constrained
4042 reflections
277 parameters

The octyloxy chain proved to be highly disordered. The part of the chain immediately attached to the arene ring (atoms O1 and C16C18) was split over two conformations, with refined occupancies of 0.568 (8):0.432 (8). Disorder was not modelled for the outer reaches of this chain. Bond-length restraints of 1.50 (2) and 1.40 (2) A were applied to all $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds, respectively, within the octyloxy chain. Pseudo-isotropic restraints (Sheldrick, 2008) were applied to the disordered C atoms and to atoms $\mathrm{C} 4, \mathrm{C} 5$ and C 6 of the terminal benzyl ring, which also shows some indication of rotational disorder (not modelled). The disordered non-H atoms at lower occupancy were treated isotropically. H atoms were included at calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) or $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups or $1.2 U_{\text {eq }}(\mathrm{C})$ otherwise.

Data collection: XPRESS (MacScience, 2002); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

NG thanks MIUR (grant No. PRIN 2007HMTJWP_002) for a fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3259). Services for accessing these data are described at the back of the journal.

References

Ali, M. A., Haroon, C. M., Nazimuddin, M., Majumder, S. M., Tarafder, M. T. H. \& Khair, M. A. (1992). Transition Met. Chem. 17, 133-136.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2004). Polyhedron, 23, 161-168.
Duan, C.-Y., Tian, Y.-P., Liu, Z.-H., You, X.-Z. \& Mak, T. C. W. (1998). J. Organomet. Chem. 570, 155-162.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. \& Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.

Islam, M. A. A. A. A., Tarafder, M. T. H., Zakaria, C. M., Guidolin, N. \& Zangrando, E. (2010). Acta Cryst. E66, o241.
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Maurya, M. R., Khurana, S., Shailendra, Azam, A., Zhang, W. \& Rehder, D. (2003). Eur. J. Inorg. Chem. pp. 1966-1973.

metal-organic compounds

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tampouris, K., Coco, S., Yannopoulos, A. \& Koinis, S. (2007). Polyhedron, 26, 4269-4275.

Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.

Tarafder, M. T. H., Saravana, N., Ali, A. M., Kashbollah, A., Crouse, K. A. \& Yih, K. Y. (2001). Asia Pac. J. Mol. Biol. Biotechnol. 9, 1-7.
Zhou, H.-P., Li, D.-M., Wang, P., Cheng, L.-H., Gao, Y.-H., Zhu, Y.-M., Wu, J.-Y., Tian, Y.-P., Tao, X.-T., Jiang, M.-H. \& Fun, H.-K. (2007). J. Mol. Struct. 826, 205-210.

